How the Risk Register Drives the Schedule Risk Analysis

David T. Hulett, Hulett & Associates, LLC (USA) Waylon T. Whitehead, ConocoPhillips (USA)

NASA PM Challenge Daytona Beach, FL February 26-27, 2008

Agenda

- Risk Register identifies high-priority risks
- Explain "Risk Factors" approach
 - Risks have probability, impact
 - Risks are assigned to activities
- Compute Monte Carlo simulation results
- Estimate sensitivity and net effect of key risks
- Apply Risk Factors to simple space vehicle development schedule as an example
- Collecting risk data for the model
- How results are used to manage project risk

ConocoPhillips

Limitations with the Traditional 3-point Estimate of Activity Duration

- Typical schedule risk analysis starts with the activity that is impacted by risks
 - Estimates the 3-point estimate for optimistic, most likely and pessimistic duration
 - Creates a probability distribution for activity duration
 - Performs Monte Carlo simulation
- Which risks cause the most overall schedule risk? These questions are typically answered by:
 - Sensitivity to activity durations
 - Criticality of activity durations
 - NOT sensitivity to the risks themselves

Some Problems with Traditional Approach

- Can tell which activities are crucial, but not directly which risks are driving
- Makes poor use of the Risk Register that is usually available
- Cannot decompose the overall schedule risk into its components BY RISK
 - Ability to assign the risk to its specific risk drivers helps with communication of risk causes and risk mitigation

We Propose a Different Approach: Start with the Risks Themselves

- Drive the schedule risk by the risks already analyzed in the Risk Register
- For each risk, specify:
 - Probability it will occur
 - Impact on time if it does
 - Activities it will affect
- Starting with the risks themselves gives us benefits
 - Links qualitative analysis to the quantitative analysis
 - Estimates the impact of specific risks for prioritized mitigation purposes

Simple Example of Risk Register Risks

	Description	Optimisitic	Most Likely	Pessimisitic	Likelihood
1.	Technology may be more Difficult than Planned	100.00%	110.00%	130.00%	100.00%
2.	Technical Labor Productivity may Vary	90.00%	100.00%	115.00%	50,00%
3.	Construction Labor Productivity may Vary	90.00%	100.00%	115.00%	100.00%

- Use the Risk Factors module in Pertmaster 8
- Collect probability and impact data on risks
- Load the risks
- Assign risks to schedule activities

Risk Factors Mechanics (1)

- The risk factor is assigned to one or several activities, affecting their durations by a multiplicative factor
 - E.g., the factor may be .90 for optimistic, 1.0 for most likely and 1.25 for pessimistic
 - These factors multiply the schedule durations of the activities to which they are assigned
- Risks can be assigned to one or more activities
- Activity durations can be influenced by one or more risks

Risk Factors Mechanics (2)

- Risk Factors are assigned a probability of occurring on any iteration.
 - When the risk occurs, the factor used is chosen at random from the 3-point estimate and operates on all activities to which it is assigned
 - When not occurring on an iteration the risk factor takes the value 1.0, a neutral value
- When an activity is influenced by more than one risk, their factors are multiplied together, if they happen, on any iteration

Risk Factor Applied to a 100 day Task (1)

	Description	Optimisitic	Most Likely	Pessimisitic	Likelihood	
1.	Construction Labor Productivity May Vary	90%	100%	115%	100%	

Here the Ranges are based on deviations + and – from the Plan. Probability is 100%

For the examples we use an activity with 100 days in the schedule

Risk Factor Applied to a 100-day Task (2)

	Description	Optimisitic	Most Likely	Pessimisitic	Likelihood	
1.	Technology may be More Difficult than Planned	100.00%	110.00%	130.00%	100.00%	

Here the Plan is the Optimistic Value. Probability is 100%

Hulett &

Associates

Assigning a Probability Less than 100%

- The essence of "risk" is the uncertainty
 - Uncertainty of its occurrence, specified by a probability
 - Uncertainty of its impact, specified by a range of durations
- If the risk may or may not occur, we specify the probability that it will occur
 - The risk occurs and affects the activities it is assigned to on X% of the iterations, chosen at random
 - On (1 X)% of the iterations, the plan value is used

Assigning a Probability Less than 100%

		Description	Optimisitic	Most Likely	Pessimisitic	Likelihood
	1.	Technology may be more Difficult than Planned	100.00%	110.00%	130.00%	60.00%
2	2.	Construction Labor Productivity May Vary	90.00%	100.00%	115.00%	30.00%

Spike contains 70% of the probability

ConocoPhillips

Spike

contains

probability

40% of

the

Assigning More than One Risk to an Activity

- If more than one risk is acting on an activity, the resulting ranges are the multiplication of the percentages
 - Risk 1 has 90%, 100% and 115%
 - Risk 2 has 100%, 110% and 130%
 - The resulting risk has ranges of
 - Optimistic: 90% (.9 x 1.0)
 - Most Likely: 110% (1.0 x 1.1)
 - Pessimistic: 150% (1.15 x 1.3)

Two Risks affect One Activity using Factors

	Description	Optimisitic	Most Likely	Pessimisitic	Likelihood
1.	Technology may be more Difficult than Planned	100%	110%	130%	100%
2.	Technical Labor Productivity May Vary	90%	100%	115%	100%

Range from 90 to 150 days, Peak about 113 days

Two Risks with Less than 100% Probability Affecting one Activity

	Description	Optimisitic	Most Likely	Pessimisitic	Likelihood	
1.	Technology may be more Difficult than Planned	100.00%	110.00%	130.00%	40.00%	
2.	Technical Labor Productivity May Vary	90.00%	100.00%	115.00%	50.00%	

1100 -

0040 - Technology Design: Duration

The spike at 100 days represents (1) the likelihood that neither risk occurs and (2) the chance that 100 days is picked when one or both occur

100% 144

Sensitivity to the Risk Factors

	Description	Optimisitic	Most Likely	Pessimisitic	Likelihood
1.	Technology may be more Difficult than Planned	100.00%	110.00%	130.00%	40.00%
2.	Technical Labor Productivity May Vary	90.00%	100.00%	115.00%	50.00%

Risk #1 has larger percentage extremes but Risk #2 has a higher probability.

Simple 2-Stage Space Vehicle Schedule

Software used: Pertmaster v. 8.0

Simple Space Vehicle Development Schedule

- 87 month schedule
 - 67 months for design, fabrication, and test of FS, US
 - 16 months of integration and test
- 10 activities linked
- Beginning 3 March 2008
- PDR on 11 SEPT 2009
- CDR on 3 June 2011
- Delivery to launch site 7 Feb 2014

Two Types of Risk

- <u>Background risk</u> based on typical general risk, estimating error
 - Used Quick Risk of -5% and +10%
- Discrete risks derived from Risk Register
 - Summarized from detailed Risk Register
 - These have a probability of occurring and an impact on specific activities if they do
 - Parallel to their Risk Register information, which is used in data collection

Schedule Including Background Risk

Background risk:
Optimistic -5% and
Pessimistic +10%

ID	Description	Rem Duration	Start	Finish	Minimum Duration	Most Likely	Maxinum Duration
SUMMA	Project summary - used for se	1900	03/Mar/08	12/Jun/15			
00001	Spacecraft Project Milestones	1900	03/Mar/08	12/Jun/1 <mark>5</mark>			
00002	Requirements Definition Spacecraft	100	03/Mar/08	18/Jul/0 <mark>8</mark>	95	100	110
00003	PDR Spacecraft	0		11/Sep 09			
00004	CDR Spacecraft	0		03/Jur/11			
00005	Ship to Launch Site	0		12/Jun/15			
00006	First Stage	1450	21/Jul/08	07/Fep/14			
00007	FS Preliminary Design	300	21/Jul/08	11/Sep/09	285	300	330
30000	FS PDR	0		11/Sep/09			
00008	FS Final Design	450	14/Sep/09	03/Jun/11	428	450	495
00010	FS CDR	0		03/Jun/11			
00011	FS Fabrication	600	06/Jun/11	20/Sep/13	570	600	660
00012	Test FS Engine	100	23/Sep/13	07/Feb/14	95	100	110
00020	Upper Stage	1450	21/Jul/08	07/Feb/14			
00021	US Preliminary Design	300	21/Jul/08	11/Sep/09	285	300	330
00022	US PDR	0		11/Sep/09			
00023	US Final Design	450	14/Sep/09	03/Jun 11	428	450	495
00024	US CDR	0		03/Jun 11			
00025	US Fabrication	600	06/Jun/11	20/Sep/ 3	570	600	660
00026	US Test	100	23/Sep/13	07/Feb/14	95	100	110
00027	Integration	350	10/Feb/14	12/Jun/15			/
00028	Integration	250	10/Feb/14	23/Jan/15	238	250	2 5
00029	Integration Testing	100	26/Jan/15	12/Jun/15	95	100	10

Results with Background Risk Only

Deterministic: 12JUN15 is <1%

P-80 is 30SEP15, about 3.5 months later than planned

Spread from P-5 to P-95 is 5JUL15 to 27OCT15 for 3.7 months

Associates

Discovery of Risk Factors

- From exploratory interviews w/ all project stakeholders to arrive at their general ideas about what the risks are
- From the project risk register (each risk listed on the risk register should be "mapped" to one Risk Factor)
- From general knowledge about conditions (market, analogous data) that might affect the project

Detailed Interviews for Information about Risk Factors

- Using the arrived at Risk Factors, conduct interviews to assess their likelihood and impact
- Be alert to the discussion of new risks during the interviews
- The use of pre-read information can assist with the amount of information that can be covered in a time limited interview

Applying Risk Factors

- Where possible, cover what type of schedule activities the risk factor will apply to
- Be alert to the need for applying the same risk factor with more than one range for different types of activities
- Be alert to the need to divide schedule activities in order to discretely apply Risk Factors

Risk Analysis on Space Vehicle Project Risk Factors are from Risk Register

	Description	Optimisitic	Most Likely	Pessimisitic	Likelihood
1.	Requirements have not been decided	95.00%	105.00%	120.00%	30.00%
2.	Several alternative designs considered	95.00%	100.00%	115.00%	60.00%
3.	New designs not yet proven	96.00%	103.00%	112.00%	40.00%
4.	Fabricaton requires new materials	96.00%	105.00%	115.00%	50.00%
5.	Lost know-how since last full spacecraft	95.00%	100.00%	105.00%	30.00%
6.	Funding from Congress is problematic	90.00%	105.00%	115.00%	40.00%
7.	Schedule for testing is aggressive	100.00%	120.00%	130.00%	100.00%

- Seven risk factors have been identified and quantified.
- Each Risk has probability assigned
- Some have optimistic ranges possible, others are pure threats

Risks Assigned to Activities (1)

Risk	Requirements Definition	FS Preliminary Design	FS Final Design	FS Fabrication	Test FS Engine
Requirements Not Complete	x				
Alternative Designs Possible		x			
Designs Not Proven			X		
New Materials in Fabrication				x	
Lost Know-How				x	
Funding Problematic		х	х	х	х
Testing Schedule Aggressive					x

Risks Assigned to Activities (2)

Risk	US Preliminary Design	US Final Design	US Fabrication	US Test	Integration	Integration Testing
Requirements Not Complete						
Alternative Designs Possible	x					
Designs Not Proven		X				
New Materials in Fabrication			X			
Lost Know-How			x		x	
Funding Problematic	х	х	х	Х	х	х
Testing Schedule Aggressive				Х		х

Results Adding Risk Factors to the Background Risk

Baseline 12JUN 15 is only 3% likely

The 80th percentile (P-80) is 29MAR16, 9.5 months later

Spread P-5 to P-95 is 12AUG15 to 2SEP16, for 12.5 months

ConocoPhillips

Activity Tornado Chart from All-In Simulation

Risky Activities:
Fabrication,
Integration, Final
Design, Preliminary
Design, Testing

All except testing have about the same influence

Risk Factor Tornado from All-In Simulation

The main RISK, however, is funding from Congress, which affected all activities. This is the main risk to mitigate, if possible

Contribution of Each Risk to the Contingency (1)

Explain the Contingency to the P-80						
	P-80 Date	Take Risks Out:				
All Risks In	6-Jun-16	Days Saved	% of Contingency			
Specific Risks Taken Out in Order						
No Funding Risk	19-Jan-16	139	39%			
No Tight Testing Schedule Risk	1-Dec-15	49	14%			
No New Design Risk	15-Oct-15	47	13%			
No Alternative Design Risk	5-Oct-15	10	3%			
No Lost Know How Risk	2-Oct-15	3	1%			
No Requirements Risk	30-Sep-15	2	1%			
Background Schedule Estimating I	Risks					
No Background Risk	12-Jun-15	110	31%			
Total Contingency		360	100%			

Contribution of Each Risk to the Contingency (2)

Summary (1)

- The focus is on the risks, not their impact
- Risks "explain" the need for a contingency
- Management appreciates this focus on risks
- Risk interviews are conducted at 20,000 foot level, where people typically think of risk
- Interviews go faster, stick to the substance

Summary (2)

- Risk Register exists, use it for quantitative analysis
- Specific risks can be quantified and assigned to schedule activities
 - Quantification is probability and impact
 - A risk can affect several activities
 - An activity can be affected by several risks
- Risk Factors can be combined with other more traditional approaches such as 3-point estimates for background risk or probabilistic branching

Using the Risk Register in Schedule Risk Analysis with Monte Carlo Simulation

David T. Hulett, Hulett & Associates, LLC (USA) Waylon T. Whitehead, ConocoPhillips (USA)

NASA PM Challenge Daytona Beach, FL February 26-27, 2008

